ОБЩЕСТВО С ОГРАНИЧЕННОЙ ОТВЕТСТВЕННОСТЬЮ

«ЭКОЛОГИЧЕСКАЯ ЛАБОРАТОРИЯ»

Отчет по муниципальному контракту № 0156300025713000003-0173755-01 от 22.03.2013 г. «Комплексная оценка и обеспечение информацией об уровне загрязнения малых рек города Перми»

2013 г.

Директор	В. В. Макаров
Начальник лаборатории	М. А. Караваева

Пермь 2013 г.

Содержание

	Стр.
Введение	3
Наблюдения за состоянием и контроль качества воды малых рек	6
города Перми	
Результаты контроля качества вод малых рек г. Перми	10
Комплексная оценка степени загрязненности поверхностных вод	19
по гидрохимическим показателям	
Заключение	25
Приложение:	26
1. Протоколы количественного химического анализа (КХА) воды	
2. Материалы по комплексной оценке степени загрязнения малых	
рек	
3. Акты отбора проб воды	

ВВЕДЕНИЕ

Настоящая работа выполнена на основании Муниципального контракта № 0156300025713000003-0173755-01 от 22.03.2013 г. «Комплексная оценка и обеспечение информацией об уровне загрязнения малых рек города Перми».

Целью выполнения работ являлась комплексная оценка состояния загрязнения малых рек г. Перми, не охваченных государственной сетью наблюдений и их влияния на загрязнение р. Кама для информационного обеспечения Управления по экологии и природопользованию администрации города Перми.

Работы по выполнению Муниципального контракта по комплексной оценке загрязненности воды в малых реках включали:

- отбор проб воды в различные фазы водного режима в реках: Данилиха, Егошиха, Ива в двух створах (исток и устье), Мулянка в одном створе (устье);
- определение содержания в отобранных пробах загрязняющих веществ (16 показателей);
- расчет класса загрязненности рек и удельных комбинаторных индексов загрязненности вод (УКИЗВ) по каждой из исследуемых рек;
 - сопоставительный анализ с данными 2010-2012 годов.

Основание для выполнения работ — наличие у Исполнителя Аттестата аккредитации на техническую компетентность и независимость в Системе аккредитации аналитических лабораторий Росстандарта (РОСС RU 0001.518743, срок действия до 28.10.2016 г.) на выполнение отбора проб и количественного химического анализа природной воды (поверхностной и подземной).

При лабораторных исследованиях воды применялись методики, допущенные для использования при мониторинге загрязнения поверхностных вод суши с последующей передачей информации в Единый государственный фонд данных о состоянии окружающей природной среды (письмо ФБУ «Гидрохимический институт» г. Ростов-на-Дону от 08.11.2012 г.)

Расчет класса загрязненности рек и удельных комбинаторных индексов загрязненности вод проводился совместно со специалистами Пермского центра по гидрометеорологии и мониторинга окружающей среды.

Краткая характеристика рек

Исследуемые малые реки города Перми (Ива, Егошиха, Данилиха и Мулянка) являются левыми притоками реки Кама (бассейн Воткинского водохранилища).

Река Ива

Река Ива образована слиянием рек Большая Ива и Малая Ива. Обе реки берут начало в лесной зоне, недалеко от территории НПО «Биомед» и старой городской свалки. В настоящее время свалка официально не эксплуатируется, проведены работы по ее рекультивации, но, несмотря на это, на территории продолжается несанкционированное складирование бытового и строительного мусора.

После слияния река протекает через весь город, черты гидрологического и гидрохимического режима водотока далеки от естественных условий. На всем протяжении река подвержена антропогенному воздействию, в нее осуществляются сбросы промышленных, хозяйственно-бытовых и ливневых сточных вод.

Почти повсеместно в водоохраной зоне располагаются хозяйственные, административные и жилые постройки. Через реку проложены многочисленные трубопроводы и мостовые переходы, также река протекает через садоводческие участки.

Русло реки извилистое, ширина 0,5-0,8 м, глубина 0,3-0,5 м, средняя скорость течения 0,08-0,4 м/с. На всем протяжении реки прослеживаются высоки эрозионные склоны, правые — более крутые, левые — отлогие и средней крутизны. Крутизна склонов изменяется от 10 до 50 градусов. Глубина эрозионного вреза изменяется от 15-20 до 50-60 м, уменьшаясь к устью.

Техногенное загрязнение реки Ива в основном обусловлено попаданием в воду стоков от:

- старой городской свалки;
- ТЭЦ-6;
- ОАО «Мотовилихинские заводы».

Река Егошиха

Река Егошиха начинается небольшим ручейком в лесном массиве около микрорайонов Липовая гора и Владимирский, недалеко от автомобильной дороги на Голый мыс. Принимая ряд небольших притоков река течет к Каме среди городских кварталов. Берега Егошихи в основном остались не затронутыми городской застройкой, на них расположены многочисленные садовые участки. Река протекает рядом с городским Южным и Егошихинским (старым) кладбищами и впадает в реку Каму в районе порта Пермь.

На некоторых участках Егошиха и ее притоки заключены в коллекторы и железобетонные трубы (пересечения с автодорогами, район спорткомплекса, устье под железнодорожными путями).

Река протекает поблизости от многочисленных промышленных предприятий и подвергается загрязнению промышленными и бытовыми отходами. На территории ее бассейна расположены следующие предприятия:

- ОАО «Велта» (в его промзоне находятся верховья притока реки);
- цех № 8 ФГУП «Машиностроительный завод им. Ф. Э. Дзержинского;
- автотранспортное предприятие;
- гараж издательства «Звезда»;
- завод имени Шпагина;
- учреждение УВД ИЗ 57/1;
- воинская часть № 81534.

Река Данилиха

Река Данилиха берет начало в южной части Свердловского района около станции Бахаревка, вытекает из болота. Она протекает по центральной части города Перми и впадает в реку Кама за территорией завода имени Дзержинского. В нижнем течении река помещена в коллектор (ее длина до входа в коллектор – 9,4 км). На всем протяжении Данилиха протекает по застроенной территории Перми и в настоящее время является приемником промышленных, хозяйственнобытовых и ливневых сточных вод, ее долина занята коллективными садами, гаражами, свалками. Естественное состояние берегов нарушено. Экологическое состояние водотока ухудшается из-за большого количества автодорог на водосборе Данилихи, а также близкого расположения железнодорожного полотна Транссибирской магистрали.

Русло реки извилистое, ширина 0,7-1,2 м, глубина 0,2-0,6 м. На всем протяжении реки прослеживаются высокие эрозионные склоны, правые — более крутые, левые — отлогие и средней крутизны.

В бассейне реки расположены:

- ООО «Новогор-Прикамье» Пермский филиал;
- железнодорожное полотно Транссибирской магистрали;
- выгреба жилых районов.

Река Мулянка

Исток реки Мулянки находится на территории Пермского района, восточнее деревень Ключики и Ольховка, вблизи поселка Звездный. Она протекает по западной окраине левобережной части Перми (Индустриальныйи Дзержинский районы). Река, протекая в черте города и прилегающего к нему Пермского района, подвергается загрязнению промышленными и бытовыми отходами, отходами животноводческих ферм, лесокомбината, лакокрасочного завода и др. Устье – у поселка Нижние Муллы.

Основными источниками загрязнения реки являются:

- предприятия промышленной зоны ООО «ЛУКОЙЛ-Пермнефтеоргсинтез», ЗАО «Сибур-Химпром», ОАО «Минеральные удобрения», ООО «ЛУКОЙЛ-ПНГП», ООО «Пеноплекс-Пермь»;
- неорганизованные и организованные ливневые и талые воды с территории совхоза «Верхне-Муллинский»;
 - выгреба жилых районов;
 - ТЭЦ-9.

1. НАБЛЮДЕНИЯ ЗА СОСТОЯНИЕМ И КОНТРОЛЬ КАЧЕСТВА ВОДЫ МАЛЫХ РЕК ГОРОДА ПЕРМИ

1.1. Расположение створов на поверхностных водных объектах – малых реках г. Перми соответствует техническому заданию Муниципального контракта. Створы наблюдений на реках, расположенных в зоне влияния предприятий города Перми, установлены в соответствии с общепринятыми принципами:

1-ый – расположен близко к истоку (условно фоновый створ);

2-ой – в устьевом участке реки.

Местонахождения створов наблюдений приведено в таблице 1.

Таблица 1.

Пункты наблюдения за состояние поверхностных водных объектов – малых рек г. Перми

Наименование малой реки	№ створа	Местонахождение створа наблюдения					
	1 - фон	в 30 м выше пересечения с ул. Куйбышева в м/р					
	1 - φοπ	Бахаревка					
Данилиха		в 100 м от устья, за территорией бывшего завода					
	2 - устье	«Коммунар», непосредственно ниже выхода реки					
		из коллектора					
	1 - фон	в логу от ул. Казахская, в районе пос. Южный					
Егошиха	2	в 500 м выше устья, 50 м выше входа реки в					
	2 - устье	коллектор на территории ж/д станции Пермь I					
	1 hor	в логу от ул. Грибоедова в районе поселка					
Ива	1 - фон	Архиерейка					
Ива	2	в логу, ниже железной дороги перед территорией					
	2 - устье	OAO «Мотовилихинские заводы»					
		в 1 км выше зоны выклинивания подпора					
Мулянка	2 - устье	Воткинского водохранилища, на южной					
·		оконечности автодрома					

1.2. На створах проведены шесть циклов наблюдений в соответствии с техническим заданием к Муниципальному контракту и с учетом основных фаз водного режима:

I - 15.04.2013 г.;

II - 14.05.2013 г.;

III – 04.07.2013 г.;

IV – 14.08.2013 г.;

V – 11.09.2013 г.;

V I - 10.10.2013 г.

1.3. Перечень показателей для контроля качества вод малых рек был выбран в соответствии с техническим заданием к Муниципальному контракту. В отобранных пробах определено 16 основных загрязняющих компонентов:

растворенный кислород, сухой остаток, БПК $_5$, ХПК, аммоний-ион, нитраты, нитриты, сульфаты, марганец, медь, цинк, хлориды, железо общее, АПАВ, фосфаты, нефтепродукты.

1.4. Определение гидрохимических показателей выполнено по методикам, допущенным к применению для государственного мониторинга поверхностных вод по OPH-031-2009 (изменение № 2 РД 52.18.595-96), а также методикам, применение которых согласовано с Ростовским гидрохимическим институтом. Перечень методик представлен в таблице 2.

Таблица 2.

Перечень используемых методик выполнения измерений

№ п/п	Гидрохимические показатели	Методики
1	Растворенный кислород	ПНД Ф 14.1:2.101-97
2	Сухой остаток	ПНД Ф 14.1:2.114-97
3	БПК ₅	ПНД Ф 14.1:2:3:4.123-97
4	ХПК	ПНД Ф 14.1:2.100-97
5	Аммоний-ион	ПНД Ф 14.1:2.1-95
6	Нитраты	ПНД Ф 14.1:2:4.4-95
7	Нитриты	ПНД Ф 14.1:2:4.3-95
8	Сульфаты	ПНД Ф 14.1:2.159-2000
9	Марганец	ПНД Ф 14.1:2.61-96
10	Медь	ПНД Ф 14.1:2:4.257-10
11	Цинк	ПНД Ф 14.1:2:4.60-96
12	Хлориды	ПНД Ф 14.1:2.111-97
13	Железо общее	ПНД Ф 14.1:2.50-96
14	АПАВ	ПНД Ф 14.1:2.15-95
15	Фосфаты	ПНД Ф 14.1:2.112-97
16	Нефтепродукты	ПНД Ф 14.1:2:4.128-98

1.5. Оценка качества рек Ива, Егошиха, Данилиха, Мулянка в указанных створах проводилась на основе статистической обработки результатов гидрохимических наблюдений, проведенной в соответствии с РД 52.24.643-2002 «Метод комплексной оценки степени загрязненности поверхностных вод по гидрохимическим показателям».

Перечень и пояснение использованных формализованных гидрохимических показателей комплексной оценки степени загрязненности малых рек и их сокращений по РД 52.24.643-2002 приведены в таблице 3.

Таблица 3. Гидрохимические показатели комплексной оценки степени загрязненности поверхностных вод

Показатели	Принятые сокращения	Пояснения	
Коэффициент комплексности	$K_{\text{комп}}$	Относительный	косвенный

загрязненности воды		показатель степени загрязненности
		поверхностных вод. Выражается в
		процентах и изменяется от 1 до 100
		при ухудшении качества воды.
		Относительный безразмерный
		комплексный показатель,
Комбинаторный индекс	КИЗВ	характеризующий загрязнение
загрязненности воды		водного объекта суммарно для всех
		учтенных компонентов.
		Относительный безразмерный
		комплексный показатель,
		характеризующий долю
		загрязняющего эффекта от одного
		усредненного учтенного
		компонента, вносимую в общую
Удельный комбинаторный		степень загрязненности воды.
индекс загрязненности воды	УКИЗВ	Значение УКИЗВ может
индеке загрязненности воды		варьировать в водах различной
		степени загрязненности от 1 до 16.
		Большему значению индекса
		соответствует худшее качество
		воды в различных створах
		(пунктах).
		Показатели, отражающие
		устойчивую либо характерную
		загрязненность на основании
Критические показатели		_
•	КПЗ	-
загрязненности воды		
		учитывающего одновременно значение концентраций и частоту
		их обнаружения.
Козффициант запаса	k	Промежуточный расчетный показатель, зависящий от числа
Коэффициент запаса	K	КПЗ
		Условное разделение всего
		диапазона состава и свойств воды в
		условиях антропогенного
Класс качества воды		воздействия от 1 класса
		наилучшего качества до 5 –
		наихудшего.
Шировий диопозон к		паихудшего.

Широкий (коэффициент показателей воды диапазон комплексных комплексности, удельный комбинаторный индекс загрязненности воды, наличие воды) загрязненности, класс возможность показателей качества дает интерпретировать данные о загрязненности водных объектов, делать выводы о тенденции изменения загрязненности воды во времени и пространстве,

количественно подсчитать величину этих изменений, сопоставить уровни загрязненности выше и ниже пунктов наблюдений.

1.6. В ходе выполнения комплексной оценки уровня загрязненности малых рек в качестве основных нормативов контроля были использованы значения ПДК, утвержденные «Нормативами качества воды водных объектов рыбохозяйственного значения, в том числе нормативы предельно допустимых концентраций вредных веществ в водах водных объектов рыбохозяйственного значения» (утв. приказом Федерального агентства по рыболовству № 20 от 18.01.2010 г.) и СанПиН 2.1.5.980-00.

2. РЕЗУЛЬТАТЫ КОНТРОЛЯ КАЧЕСТВА ВОД МАЛЫХ РЕК Г. ПЕРМИ

2.1. Результаты общие для всех малых рек г. Перми

2.1.1. Обобщенная информация по выявленным загрязнениям в поверхностных водных объектах – малых реках г. Перми представлена в таблицах 4-7 и соответствует содержанию протоколов результатов анализов, приведенных в Приложении № 1 настоящего отчета.

В таблицах выделены:

- установленные превышения ПДК шрифтом красного цвета;
- максимальные из установленных превышений ПДК в каждой контрольной точке желтой заливкой;
- среднегодовые концентрации веществ, рассчитанные для каждой контрольной точки светло-желтой заливкой.

Максимальная кратность превышения ПДК по отдельным компонентам, а также кратность превышения ПДК для рассчитанных среднегодовых концентраций загрязняющих веществ в воде малых рек г. Перми представлены в таблице 8.

- 2.1.2. За период выполнения работ по Муниципальному контракту во всех малых реках, протекающих по г. Перми не выявлено превышения ПДК по следующим показателям: нитраты и хлориды.
 - 2.1.3. Единичные превышения ПДК за период наблюдений выявлены по:
 - сухому остатку (15.04.2013 г.) на реке Егошиха.
- 2.1.4. Кислородный режим (содержание растворенного кислорода) в течение всего периода был удовлетворительным. Пониженное содержание наблюдалось в фоновой точке р. Данилиха в период с 04.07.2013 г. по 10.10.2013 г. В 2012 году в данной точке кислородный режим был неблагоприятным 1 раз в октябре.
- 2.1.5. В течение всего периода наблюдений во всех контрольных точках на всех реках наблюдалось устойчивое превышение ПДК по следующим показателям: БПК₅, ХПК, азот аммония, азот нитритов, марганец, медь, цинк, железо, фосфаты, нефтепродукты.
- 2.1.6. Данные по выявленному экстремально высокому и высокому загрязнению малых рек за период наблюдения приведены в таблицах 9 и 10.

Таблица 4. Результаты контроля качества воды по двум створам реки Ива за полный цикл наблюдений (2013 год)

Определяемая			Результаты, мг/дм ³												
характеристика,	ПДК	Фон				I		•	Устье						
единицы	p/x	II k	α.		III кв.		IV кв.	Среднегодовая	II :	кв.		III кв.		IV кв.	Среднегодовая
измерения		15.04.	14.05.	04.07.	14.08.	11.09.	10.10.	концентрация	15.04.	14.05.	04.07.	14.08.	11.09.	10.10.	концентрация
Растворенный кислород	<u>≥</u> 6	10,4	11,3	10,6	9,8	9,2	10,5	10,3	11,6	10	8,3	8,5	7,5	9,1	9,167
Сухой остаток	1000	582	624	646	652	672	634	635	594	642	708	720	750	754	694,667
БПК5	2	2,5	2	2,3	1,4	1	1,5	1,783	3	5,8	7,7	4,4	4,9	8,6	5,733
ХПК	15	43	20	10,7	24	18	25	23,45	45	38	22,2	29	19	50	33,867
Азот аммония	0,4	0,37	0,086	<0,039	<0,039	<0,039	0,055	0,105	0,30	2,1	2,11	2,01	1,4	5,5	2,237
Азот нитратов	9	7,5	8,2	8,1	4,6	7,4	5,8	6,933	4,3	5,5	5,6	4,3	4,6	4	4,717
Азот нитритов	0,02	0,028	0,023	0,012	0,011	0,012	0,006	0,015	0,023	0,052	0,38	0,32	0,32	0,16	0,209
Сульфаты	100	71	85	96	68	60	47	71,167	82	101	139	117	125	125	114,833
Марганец	0,01	0,27	0,12	<0,05	0,1	0,05	<0,05	0,107	0,21	0,21	0,27	0,2	0,21	0,2	0,217
Медь	0,001	<0,0005	<0,0005	0,0015	0,0053	0,0025	0,0037	0,002	<0,0005	<0,0005	0,0051	0,002	0,0027	0,001	0,002
Цинк	0,01	<0,005	<0,005	0,011	<0,005	<0,005	<0,005	0,006	<0,005	<0,005	0,011	0,005	<0,005	<0,005	0,006
Хлориды	300	64	49	45	46	49	57	51,667	71	77	68	65	70	64	69,167
Железо общее	0,1	0,085	0,068	0,089	0,09	0,07	0,059	0,077	0,135	0,15	0,142	0,17	0,14	0,15	0,148
АПАВ	0,1	0,025	<0,01	<0,01	0,035	0,032	0,033	0,024	0,03	0,088	0,012	0,068	0,076	0,039	0,052
Фосфаты	0,2	0,21	0,102	<0,05	<0,05	0,06	0,092	0,094	0,26	0,86	1,16	0,58	0,96	1,29	0,852
Нефтепродукты	0,05	0,45	0,035	0,034	0,061	0,037	0,053	0,112	0,55	0,069	0,1	0,13	0,13	0,12	0,183

Таблица 5. Результаты контроля качества воды по двум створам реки Егошиха за полный цикл наблюдений (2013 год)

Определяемая								Результат	ы, мг/дм ³						
характеристика,	ПДК	Фон					Устье								
единицы	p/x	II k	α.		III кв.		IV кв.	Среднегодовая	II 1	кв.		III кв.		IV кв.	Среднегодовая
измерения		15.04.	14.05.	04.07.	14.08.	11.09.	10.10.	концентрация	15.04.	14.05.	04.07.	14.08.	11.09.	10.10.	концентрация
Растворенный кислород	<u>≥</u> 6	10,9	10	8,7	9,1	9,2	10,7	9,767	11	10,8	9,1	9,1	9,1	10,5	9,933
Сухой остаток	1000	724	746	680	628	790	770	723	1560	748	656	732	714	730	856,667
БПК ₅	2	1,6	2,3	1,32	0,6	0,71	4,5	1,838	3,1	3,5	0,98	2,2	3,4	4,7	2,98
ХПК	15	45	58	33,3	52	29	13	38,383	97	47	25,9	44	31	50	49,15
Азот аммония	0,4	<0,04	0,13	0,086	0,094	0,053	0,12	0,087	1,9	0,63	0,086	0,078	0,19	0,72	0,601
Азот нитратов	9	2,05	1,1	1,06	0,76	1,01	0,92	1,15	2,44	2,65	2,69	2,37	2,9	2,44	2,582
Азот нитритов	0,02	0,01	0,0072	<0,006	<0,006	0,009	0,0084	0,008	0,048	0,084	0,045	0,021	0,28	0,099	0,096
Сульфаты	100	115	72	68	50	62	37	67,333	162	100	99	99	71	107	106,333
Марганец	0,01	<0,05	<0,05	0,05	0,05	0,05	0,057	0,051	0,85	0,37	0,06	0,085	0,13	0,26	0,293
Медь	0,001	<0,0005	0,0008	0,0032	0,0011	0,0027	<0,0005	0,001	<0,0005	0,0021	0,0032	0,0015	0,0027	<0,0005	0,002
Цинк	0,01	0,041	<0,005	<0,005	<0,005	<0,005	0,0056	0,011	0,042	<0,005	<0,005	<0,005	<0,005	<0,005	0,011
Хлориды	300	153	197	157	118	230	204	176,5	479	131	82	76	86	82	156
Железо общее	0,1	0,09	0,13	0,15	0,19	0,1	0,12	0,13	0,22	0,17	0,21	0,14	0,18	0,18	0,183
АПАВ	0,1	<0,01	0,026	<0,01	0,043	0,044	0,037	0,028	0,115	0,091	0,01	0,047	0,055	0,041	0,06
Фосфаты	0,2	0,23	0,107	0,33	0,096	0,2	0,3	0,211	0,45	0,67	0,76	0,24	0,58	0,75	0,575
Нефтепродукты	0,05	0,04	0,04	0,021	0,064	0,07	0,089	0,054	0,17	0,106	0,083	0,14	0,18	0,18	0,143

Таблица 6. Результаты контроля качества воды по двум створам реки Данилиха за полный цикл наблюдений (2013 год)

Определяемая								Результат	ы, мг/дм ³						
характеристика,	ПДК	Фон						•	Устье						
единицы	p/x	II k	α.		III кв.		IV кв.	Среднегодовая	II	кв.		III кв.		IV кв.	Среднегодовая
измерения		15.04.	14.05.	04.07.	14.08.	11.09.	10.10.	концентрация	15.04.	14.05.	04.07.	14.08.	11.09.	10.10.	концентрация
Растворенный кислород	<u>≥</u> 6	6,5	9,3	1,63	<1	3,2	3,6	4,205	10,4	9,5	6,7	8,5	8,4	9,6	8,85
Сухой остаток	1000	498	724	744	522	542	626	609,333	734	622	492	539	662	652	616,833
$Б\Pi K_5$	2	5,6	3	5,7	5,4	3,3	4,5	4,583	6,5	7,5	5,5	5,7	1,9	8,1	5,867
ХПК	15	41	36	40	44	32	38	38,5	60	38	23,8	37	29	54	40,3
Азот аммония	0,4	2	0,22	1,4	1,67	0,74	1,19	1,203	2	0,76	0,62	0,56	0,39	0,94	0,878
Азот нитратов	9	1,08	1,06	0,21	<0,023	0,037	0,25	0,443	2,62	1,1	2,12	1,77	2,39	1,96	1,993
Азот нитритов	0,02	0,033	0,024	<0,006	<0,006	0,024	0,025	0,02	0,051	0,114	0,156	0,225	0,27	0,095	0,152
Сульфаты	100	68	129	81	30	33	42	63,833	11	113	107	127	116	108	97
Марганец	0,01	0,51	0,24	2,3	0,93	0,29	0,23	0,75	0,36	0,29	0,1	0,14	0,16	0,16	0,202
Медь	0,001	<0,0005	0,0007	0,0046	0,0013	0,0028	<0,0005	0,002	<0,0005	0,0014	0,0034	0,0033	0,0088	0,0022	0,003
Цинк	0,01	<0,005	<0,005	<0,005	<0,005	<0,005	0,008	0,006	0,0058	0,019	<0,005	<0,005	1,21	0,045	0,215
Хлориды	300	73	51	63	45	38	39	51,5	90	72	47	49	77	67	67
Железо общее	0,1	0,32	0,27	0,37	0,32	0,32	0,24	0,307	0,13	0,31	0,26	0,17	0,12	0,15	0,19
АПАВ	0,1	0,104	0,106	0,051	0,104	0,07	0,082	0,086	0,166	0,159	0,064	0,066	0,095	0,047	0,1
Фосфаты	0,2	0,071	0,066	0,85	0,2	0,27	0,51	0,328	0,25	0,42	0,44	0,056	0,18	0,51	0,309
Нефтепродукты	0,05	0,56	0,12	0,096	0,21	0,26	0,17	0,236	0,66	0,13	0,096	0,53	0,18	0,13	0,288

Таблица 7. **Результаты контроля качества воды по двум створам реки Мулянка за полный цикл наблюдений (2013 год)**

Онранандамод					Результат	ты, мг/дм ³							
Определяемая	ПДК		Устье										
характеристика,	p/x	II	кв.		III кв.		IV кв.	Среднегодовая					
единицы измерения		15.04.	14.05.	04.07.	14.08.	11.09.	10.10.	концентрация					
Растворенный кислород	<u>></u> 6	10	10,3	8,6	8,5	8,9	10,6	9,483					
Сухой остаток	1000	319	510	508	474	486	504	466,833					
$БПК_5$	2	9	3,7	3,2	1,6	1,5	2,2	3,533					
ХПК	15	45	27	19,8	24	32	29	29,467					
Азот аммония	0,4	0,86	0,19	0,1	0,1	0,057	0,22	0,255					
Азот нитратов	9	2,39	2,19	1,84	1,7	1,86	2,16	2,023					
Азот нитритов	0,02	0,029	0,023	0,027	0,015	0,015	0,022	0,022					
Сульфаты	100	53	68	90	50	61	76	66,333					
Марганец	0,01	0,21	0,16	0,08	0,08	< 0,05	0,085	0,111					
Медь	0,001	<0,0005	<0,0005	0,0014	0,0014	0,00053	<0,0005	0,001					
Цинк	0,01	0,041	<0,005	0,0057	<0,005	<0,005	<0,005	0,011					
Хлориды	300	30	39	36	38	41	36	36,667					
Железо общее	0,1	0,38	0,21	0,26	0,16	0,16	0,18	0,225					
АПАВ	0,1	0,076	0,039	0,032	0,054	0,063	0,044	0,051					
Фосфаты	0,2	0,49	<0,05	0,23	0,069	0,07	0,184	0,182					
Нефтепродукты	0,05	0,15	0,066	0,062	0,096	0,083	0,068	0,088					

Таблица 8. Максимальная зарегистрированная кратность превышения ПДК по каждому показателю и кратность превышения ПДК среднегодовых концентраций загрязняющих компонентов за полный цикл наблюдений малых рек города Перми (2013 год)

Определяемая			И	[ва			Егоп	шиха			Данилі	иха		Муля	нка
характеристика,	ПДК	d	Оон	Ус	тье	Ф	ОН	Ус	стье		Фон	Ус	стье	Усть	se
единицы	p/x	ПДК	ПДК	ПДК	ПДК	ПДК	ПДК	ПДК	ПДК	ПДК	ПДК	ПДК	ПДК	ПДК	ПДК
измерения		max	сг	max	сг	max	сг	max	сг	max	сг	max	сг	max	сг
Растворенный кислород	<u>></u> 6									6	1,43				
Сухой остаток	1000							1,56							
$Б\Pi K_5$	2	1,25		4,3	2,87	2,25		2,35	1,49	2,85	2,29	4,05	2,93	4,5	1,77
ХПК	15	2,87	1,56	3,33	2,26	3,87	2,56	6,47	3,28	2,93	2,57	4	2,69	3	1,96
Азот аммония	0,4			5,28	5,59			4,75	1,50	5	3,01	5	2,20	2,15	
Азот нитратов	9														
Азот нитритов	0,02	1,4		19	10,45			14	4,8	1,65		7,8	7,6	1,45	1,1
Сульфаты	100			1,39	1,15	1,15		1,62	1,06	1,29		1,27			
Марганец	0,01	27	10,7	27	21,7	5,7	5,1	85	29,3	230	75	36	20,2	21	11,1
Медь	0,001	5,3	2	5,1	2	3,2		3,2	2	4,6	2	8,8	3	1,4	
Цинк	0,01	1,1		1,1		4,1	1,1	4,2	1,1			121	21,5	4,1	1,1
Хлориды	300														
Железо общее	0,1			1,7	1,48	1,9	1,3	2,2	1,83	3,7	3,07	3,1	1,9	3,8	2,25
АПАВ	0,1							1,15		1,06		1,66			
Фосфаты	0,2	1,05		6,45	4,26	1,65	1,06	3,8	2,88	4,25	1,64	2,55	1,55	2,45	
Нефтепродукты	0,05	9	2,24	11	3,66	1,78	1,08	3,6	2,86	11,2	4,72	13,2	5,76		

2.2. Река Ива

- 2.2.1. Результаты количественного определения загрязняющих веществ и выявленные превышения ПДК в реке Ива приведены в таблице 4. Максимальная кратность превышения ПДК по отдельным компонентам, а также кратность превышения ПДК среднегодовых концентраций загрязняющих веществ представлены в таблице 8.
 - 2.2.2. В воде реки Ива не установлено превышений ПДК по:
 - растворенному кислороду;
 - сухому остатку;
 - нитратам;
 - хлоридам;
 - АПАВ.
- 2.2.3. Однократно за период наблюдений в воде фонового и устьевого створов реки Ива зарегистрированы превышения ПДК по цинку.
- 2.2.4. На протяжении всей реки выявлено устойчивое загрязнение по следующим показателям:
 - **-** БПК₅;
 - ΧΠΚ;
 - нитриты;
 - марганец;
 - медь;
 - фосфаты;
 - нефтепродукты.

2.3. Река Егошиха

- 2.3.1. Результаты количественного определения загрязняющих веществ и выявленные превышения ПДК в реке Егошиха приведены в таблице 5. Максимальная кратность превышения ПДК по отдельным компонентам, а также кратность превышения ПДК среднегодовых концентраций загрязняющих веществ представлены в таблице 8.
 - 2.3.2. В воде реки Егошиха не установлено превышений ПДК по:
 - растворенному кислороду;
 - нитратам;
 - хлоридам.
- 2.3.3. Однократно за период наблюдений в воде фонового створа реки Егошиха зарегистрировано превышение ПДК по сухому остатку и АПАВ.
- 2.3.4. На протяжении всей реки выявлено устойчивое загрязнение по следующим показателям:
 - БПК₅;
 - **-** ΧΠΚ;
 - марганец;
 - медь;
 - фосфаты;
 - железо общее;
 - нефтепродукты.

2.4. Река Данилиха

- 2.4.1. Результаты количественного определения загрязняющих веществ и выявленные превышения ПДК в реке Данилиха приведены в таблице 6. Максимальная кратность превышения ПДК по отдельным компонентам, а также кратность превышения ПДК среднегодовых концентраций загрязняющих веществ представлены в таблице 8.
 - 2.4.2. В воде реки Данилиха не установлено превышений ПДК по:
 - сухому остатку;
 - нитратам;
 - хлоридам.
- 2.4.3. Однократных загрязнений за период наблюдений в реке Данилиха не зарегистрировано.
- 2.4.4. На протяжении всей реки выявлено устойчивое загрязнение по следующим показателям:
 - БПК₅;
 - ΧΠΚ;
 - аммоний-ион;
 - нитриты;
 - марганец;
 - медь;
 - железо общее;
 - фосфаты;
 - нефтепродукты.

2.5. Река Мулянка

- 2.5.1. Результаты количественного определения загрязняющих веществ и выявленные превышения ПДК в реке Мулянка приведены в таблице 7. Максимальная кратность превышения ПДК по отдельным компонентам, а также кратность превышения ПДК среднегодовых концентраций загрязняющих веществ представлены в таблице 8.
 - 2.5.2. В воде реки Мулянка не установлено превышений ПДК по:
 - растворенному кислороду;
 - сухому остатку;
 - нитратам;
 - сульфатам;
 - хлоридам;
 - **-** AΠAΒ;
 - нефтепродуктам.
- 2.5.3. Однократно за период наблюдений в воде устьевого створа реки Мулянка зарегистрировано превышение ПДК по аммоний-иону и цинку.
- 2.5.4. На протяжении всей реки выявлено устойчивое загрязнение по следующим показателям:
 - **-** БПК₅;
 - ΧΠΚ;
 - нитриты;
 - марганец;
 - железо общее.

Полученные за период наблюдений данные по экстремально высокому загрязнению малых рек

	Критерий экстремально	Экстре	емально высокое загрязнение
Показатель	высокого загрязнения (по РД 52.24.643-2002, приложение Г)	Количество	Перечень точек
Марганец	Более 50 ПДК	1	р. Егошиха, устье
марганоц	волее 30 пдк	3	р. Данилиха, фон
		1	р. Егошиха, устье
Азот нитритов	Более 5 ПДК	4	р. Ива, устье
		4	Р. Данилиха, устье
Растворенный кислород	Менее 2 мг/дм ³	2	Р. Данилиха, фон
Цинк	Более 50 ПДК	1	р. Данилиха, устье

Таблица 10.

Полученные за период наблюдений данные по высокому загрязнению малых рек

	Критерий высокого		Высокое загрязнение
Показатель	загрязнения (по РД 52.24.643-2002, приложение Г)	Количество	Перечень точек
A 20T HATDATOR	3-5 ПДК	1	р. Егошиха, устье
Азот нитритов	3-3 ПДК	1	р. Данилиха, устье
		2	р. Мулянка, устье
		3	р. Ива, фон
Марганец	10-50 ПДК	6	р. Ива, устье
Марганец	10-30 ПДК	4	р. Егошиха, устье
		6	р. Данилиха, фон
		6	р. Данилиха, устье

3. КОМПЛЕКСНАЯ ОЦЕНКА СТЕПЕНИ ЗАГРЯЗНЕННОСТИ ПОВЕРХНОСТНЫХ ВОД ПО ГИДРОХИМИЧЕСКИМ ПОКАЗАТЕЛЯМ

3.1. Методы, средства и показатели оценки

- 3.1.1. Гидрохимические данные, полученные при наблюдении за состоянием поверхностных водных объектов малых рек города Перми, в фоновых (близких к истоку) и в устьевых створах, находящихся в зоне антропогенного влияния города были обработаны и обобщены в соответствии с РД 52.24.643-2002 «МУ. Метод комплексной оценки степени загрязненности поверхностных вод по гидрохимическим показателям».
- 3.1.2. Комплексная оценка степени загрязнения поверхностных вод на каждом створе была проведена с использованием перечня из 16 показателей.
 - 3.1.3. Определены следующие комплексные показатели:
 - коэффициент комплексности загрязненности воды (Ккомп);
 - критические показатели загрязненности воды (КПЗ);
 - коэффициент запаса;
 - класс качества воды;
 - комбинаторный индекс загрязненности воды (КИЗВ);
 - удельный комбинаторный индекс загрязненности воды (УКИЗВ).

При расчете КИЗВ для каждого компонента были определены:

- повторяемость случаев загрязнения;
- среднее значение кратности превышения ПДК;
- оценочный балл повторяемости.
- 3.1.4. Комплексная оценка проведена с применением программы «ГидрохимПК», разработанной Гидрохимическим институтом Росгидромета (г. Ростов-на-Дону), совместно со специалистами Пермского центра по гидрометеорологии и мониторингу окружающей среды.

Материалы расчетов приведены в Приложении № 2 настоящего отчета. Обобщенные данные по результатам комплексной оценки степени загрязненности воды представлены в таблице 11.

Таблица 11. Результаты комплексной оценки степени загрязнения воды малых рек города Перми

	Наименование малой	Количество	Количество		кие показатели ости воды (КПЗ)	Коэффициент	Класс	качества воды	Комбинаторный индекс	Удельный комбинаторный	Коэффициент комплексности		
№ п/п	реки и пункт наблюдения	учтенных ингредиентов	загрязняющих ингредиентов	Количество	Наименование	запаса (k)	№ класса	Наименование	загрязненности воды (КИЗВ)	индекс загрязненности воды (УКИЗВ)	загрязненности воды ($K_{\text{комп}}$, ср.)		
1.					P	ека Ива							
1.1.	Фоновый участок	14	7	1	марганец	0,9	3Б	очень загрязненная	43,3	3,1	27,1		
1.2.	Устьевой участок	14	10	3	азот аммонийный, азот нитритов, марганец	0,7	4B	очень грязная	79	5,64	60,0		
2.	Река Егошиха												
2.1.	Фоновый участок	14	8	0		1	3Б	очень загрязненная	48,5	3,46	28,6		
2.2.	Устьевой участок	14	12	2	азот нитритов, марганец	0,8	4Б	грязная	84,5	6,04	56,0		
3.					Река	Данилиха							
3.1.	Фоновый участок	14	11	2	растворенный кислород, марганец	0,8	4B	очень грязная	93,4	6,67	59,0		
3.2.	Устьевой участок	14	11	3	БПК ₅ , азот нитритов, марганец	0,7	4B	очень грязная	89,6	6,4	66,1		
4.					Река	Мулянка							
4.1.	Устьевой участок	14	9	1	марганец	0,9	4A	грязная	60,1	4,29	42,9		

3.2. Результаты комплексной оценки воды малых рек по степени загрязненности

Комплексная оценка степени загрязненности малых рек проведена в соответствии с техническим заданием к контракту для всех контролируемых створов.

3.2.1. Река Ива, фоновый створ

В фоновой точке р. Ива получены расчетные значения удельного комбинаторного индекса УКИЗВ=3,1 при коэффициенте запаса = 0,9. Таким образом, по характеристике уровня загрязненности воды (классу качества) вода р. Ива в фоновом створе определена как вода 3 класса разряда Б — очень загрязненная.

3.2.2. Река Ива, устьевой створ

В устьевой точке р. Ива получены расчетные значения удельного комбинаторного индекса УКИЗВ=5,64 при коэффициенте запаса = 0,7. Таким образом, по характеристике уровня загрязненности воды (классу качества) вода р. Ива в устьевом створе определена как вода 4 класса разряда В – очень грязная.

3.2.3. Река Егошиха, фоновый створ

В фоновой точке р. Егошиха получены расчетные значения удельного комбинаторного индекса УКИЗВ=3,46 при коэффициенте запаса = 1,0. Таким образом, по характеристике уровня загрязненности воды (классу качества) вода р. Егошиха в фоновом створе определена как вода 3 класса разряда \mathbf{F} — очень загрязненная.

3.2.4. Река Егошиха, устьевой створ

В устьевой точке р. Егошиха получены расчетные значения удельного комбинаторного индекса УКИЗВ=6,04 при коэффициенте запаса = 0,8. Таким образом, по характеристике уровня загрязненности воды (классу качества) вода р. Егошиха в устьевом створе определена как вода 4 класса разряда Б – грязная.

3.2.5. Река Данилиха, фоновый створ

В фоновой точке р. Данилиха получены расчетные значения удельного комбинаторного индекса УКИЗВ=6,67 при коэффициенте запаса = 0,8. Таким образом, по характеристике уровня загрязненности воды (классу качества) вода р. Данилиха в фоновом створе определена как вода 4 класса разряда В – очень грязная.

3.2.6. Река Данилиха, устьевой створ

В устьевой точке р. Данилиха получены расчетные значения удельного комбинаторного индекса УКИЗВ=6,40 при коэффициенте запаса = 0,7. Таким образом, по характеристике уровня загрязненности воды (классу качества) вода р. Данилиха в устьевом створе определена как вода 4 класса разряда В – очень грязная.

3.2.7. Река Мулянка, устьевой створ

В устьевой точке р. Мулянка получены расчетные значения удельного комбинаторного индекса УКИЗВ=4,29 при коэффициенте запаса = 0,9. Таким образом, по характеристике уровня загрязненности воды (классу качества) вода р. Мулянка в устьевом створе определена как вода 4 класса разряда А – грязная.

3.3. Сопоставление результатов комплексной оценки загрязненности малых рек с данными 2008-2012 гг.

Сравнительные данные по комплексной оценке качества воды малых рек г. Перми представлены в табл. 12, 13.

Из представленных таблиц видно, что качество воды в 2012 году осталось на уровне 2011 года.

Произошло незначительное улучшение воды в фоне р. Ива, фоне и устье р. Егошиха. Ухудшение по классу качества воды наблюдалось в фоне р. Данилиха.

Таблица 12 Характеристика качества малых рек г. Перми по значениям УКИЗВ и классу качества воды в 2008-2013 гг.

		20	008 год	20	009 год	20	010 год	2	011 год	201	2 год	2013 год		
Наименование реки	Наименование створа	УКИЗВ	УКИЗВ Класс качества воды		УКИЗВ Класс качества воды		Класс качества воды	УКИЗВ	Класс качества воды	УКИЗВ	Класс качества воды	УКИЗВ	Класс качества воды	
Ива	Фон	5,83	4 «В» (очень грязная)	4,85	4 «А» (грязная)	7,37	5 (экстремально грязная)	5,72	5 (экстремально грязная)	4,1	4 «А» (грязная)	3,1	3 «Б» (очень загрязненная)	
Tibu	Устье	4,95	4 «А» (грязная)	5,19	4 «Б» (грязная)	5,95	4 «В» (очень грязная)	5,62	4 «В» (очень грязная)	5,65	4 «Б» (грязная)	5,64	4 «В» (очень грязная)	
	Фон	4,24	4 «А» (грязная)	2,49	3 «А» (загрязненная)	2,32	3 «А» (загрязненная)	2,22	3 «А» (загрязненная)	4,04	4 «А» (грязная)	3,46	3 «Б» (очень загрязненная)	
Егошиха	Устье	5,87	4 «Б» (грязная)	6,28	5 (экстремально грязная)	6,24	5 (экстремально грязная)	5,26	4 «В» (очень грязная)	6,77	4 «В» (очень грязная)	6,04	4 «Б» (грязная)	
Данилиха	Фон	5,23	4 «А» (грязная)	4,87	4 «В» (очень грязная)	6,78	5 (экстремально грязная)	7,28	5 (экстремально грязная)	6,03	4 «Б» (грязная)	6,67	4 «В» (очень грязная)	
данилиха	Устье	8,48	5 (экстремально грязная)	7,94	5 (экстремально грязная)	6,38	4 «Г» (очень грязная)	5,52	4 «Б» (грязная)	6,85	4 «В» (очень грязная)	6,4	4 «В» (очень грязная)	
Мулянка	Устье	3,09	3 «Б» (очень загрязненная)	2,84	3 «Б» (очень загрязненная)	2,96	3 «Б» (очень загрязненная)	2,51	3 «А» (загрязненная)	5,02	4 «А» (грязная)	4,29	4 «А» (грязная)	

Таблица 13 Сопоставление среднегодовых концентраций загрязняющих компонентов в контрольных створах малых рек г. Перми за $2008-2013~{
m FL}$.

Загрязняющие	ПДК,		Река Ива														Река Егошиха												
компоненты	$M\Gamma/дM^3$			фо	Н			устье								ф	ОН			устье									
		2008	2009	2010	2011	2012	2013	2008	2009	2010	2011	2012	2013	2008	2009	2010	2011	2012	2013	2008	2009	2010	2011	2012	2013				
Азот аммония	0,4	1,85	1,2	3,33	1,82	0,122	0,105	0,35	0,21	0,16	0,59	0,197	2,237	0,6	0,09	0,01	<0,04	0,162	0,087	1,38	0,94	0,12	0,75	0,52	0,601				
Азот нитратов	9,0	1,82	0,73	5,88	9,38	5,367	6,933	5,72	5,65	19,0	23,12	3,812	4,717	1,38	0,85	4,7	6,70	1,318	1,15	2,7	1,03	10,3	10,35	2,318	2,582				
Азот нитритов	0,02	0,221	0,06	0,10	0,07	0,017	0,015	0,041	0,05	0,08	0,07	0,05	0,209	0,017	0,01	0,01	0,01	0,008	0,008	0,164	0,11	0,09	0,12	0,069	0,096				
Сульфаты	100	65,2	54,9	90	70,0	78,517	71,167	135	124	137	137	99,55	114,833	86,6	55,2	81	83,0	68,333	67,333	132	97,9	149	154,5	103,883	106,333				
Марганец	0,01	0,3	0,3	0,25	0,18	0,052	0,107	0,22	0,22	0,28	0,16	0,067	0,217	0,14	0,07	0,05	0,04	<0,05	0,051	0,28	0,27	0,21	0,27	0,119	0,293				
Медь	0,001	0,004	0,005	0,02	0,005	0,002	0,002	0,002	0,009	0,005	0,004	0,003	0,002	0,002	0,001	0,01	0,002	0,001	0,001	0,007	0,011	0,02	0,003	0,004	0,002				
Цинк	0,01	0,006	0,04	0,01	0,007	0,019	0,006	0,005	0,017	<0,005	<0,005	0,113	0,006	0,14	0,04	0,005	< 0,005	0,042	0,011	0,006	0,022	0,005	< 0,005	0,194	0,011				
Фосфаты	0,2	0,142	0,62	1,7	0,89	0,173	0,094	0,133	0,31	0,32	0,38	0,265	0,852	0,058	0,19	0,17	0,15	0,195	0,211	0,27	0,74	0,63	0,46	0,391	0,575				
СПАВ(а)	0,1	0,07	0,037	0,05	0,04	0,043	0,024	0,03	0,035	0,03	0,04	0,05	0,052	0,04	0,023	0,02	0,03	0,047	0,028	0,14	0,078	0,04	0,05	0,204	0,06				
ХПК	15	61,8	40,5	78	69,0	19,5	23,45	31,9	17,8	36	60,5	35,983	33,867	31,5	10,2	21,6	20,0	44,133	38,383	57,6	35	38,7	28,17	46,9	49,15				
БПК5	2	3,02	3,2	15	17,32	1,57	1,783	1,63	2,6	2,0	5,14	3,223	5,733	1,18	1,08	1,3	1,56	1,228	1,838	1,55	5,08	3,6	4,0	3,233	2,98				
Нефтепродукты	0,05	0,16	0,05	0,06	0,05	0,086	0,112	0,12	0,45	0,38	1,42	0,393	0,183	0,09	0,03	0,03	0,04	0,083	0,054	0,22	0,7	1,0	0,34	0,705	0,143				
Железо общее	0,1	0,23	0,3	0,23	0,10	0,233	0,077	0,19	0,87	0,20	0,06	0,262	0,148	0,15	0,14	0,06	0,04	0,317	0,13	0,58	0,89	0,15	0,06	0,297	0,183				
Количество превышений ПДК		8	9	9	8	8	4	7	10	9	11	9	10	7	3	3	3	5	6	10	9	10	10	12	11				

Загрязняющие	ПДК,				Река Мулянка																
компоненты	мг/дм3			фо	Н					yc.	тье			устье							
		2008	2009	2010	2011	2012	2013	2008	2009	2010	2011	2012	2013	2008	2009	2010	2011	2012	2013		
Азот аммония	0,4	0,39	0,11	0,36	1,26	0,53	1,203	12,4	4,89	0,22	1,01	1,472	0,878	0,18	0,14	0,05	0,13	0,096	0,255		
Азот нитратов	9,0	0,65	0,19	1,40	4,84	1,178	0,443	0,36	0,86	5,86	6,01	3,103	1,993	2,71	1,48	5,83	8,16	1,668	2,023		
Азот нитритов	0,02	0,02	0,01	0,02	0,03	0,039	0,02	0,071	0,17	0,05	0,09	0,09	0,152	0,02	0,02	0,02	0,02	0,018	0,022		
Сульфаты	100	97,3	69,6	99	96,83	66,15	63,833	131	109,8	136	158,0	108,317	97	75,5	73,5	85	86,0	90,033	66,333		
Марганец	0,01	0,08	0,29	1,11	0,97	0,079	0,75	0,22	0,2	0,20	0,17	0,089	0,202	0,24	0,08	0,07	0,06	0,05	0,111		
Медь	0,001	0,002	0,003	0,02	0,003	0,002	0,002	0,005	0,012	0,03	0,005	0,002	0,003	0,002	0,001	0,01	0,003	0,002	0,001		
Цинк	0,01	0,006	0,01	0,01	0,007	0,127	0,006	0,016	0,055	0,01	0,005	0,051	0,215	0,002	0,06	0,005	<0,005	0,028	0,011		
Фосфаты	0,2	0,12	0,27	0,64	0,56	0,235	0,328	1,19	2,59	0,62	0,47	0,37	0,309	0,073	0,25	0,30	0,12	0,109	0,182		
СПАВ(а)	0,1	0,24	0,061	0,09	0,08	0,091	0,086	2,13	0,15	0,04	0,09	0,177	0,1	0,03	0,03	0,04	0,03	0,078	0,051		
ХПК	15	36,5	52,5	33,4	135,33	22,617	38,5	144	57,3	46,1	26,83	44,867	40,3	26,1	10,2	18,3	16	33,267	29,467		
$Б\Pi K_5$	2	1,32	4,56	2,5	55,13	2,278	4,583	20,8	15,7	5,9	6,10	6,792	5,867	1,06	1,02	1,6	2,0	4,383	3,533		
Нефтепродукты	0,05	0,06	0,12	0,07	0,17	0,203	0,236	1,51	0,3	1,01	0,1	0,435	0,288	0,11	0,04	0,02	0,03	0,095	0,088		
Железо общее	0,1	0,16	0,6	0,19	0,82	0,452	0,307	0,53	0,66	0,29	0,14	0,367	0,19	0,16	0,17	0,10	0,10	0,312	0,225		
Количество превышений пдк		6	7	7	10	10	8	12	12	9	10	12	10	5	4	4	3	6	7		

Заключение

За весь период наблюдений в 2013 году не выявлено превышений ПДК по следующим показателям:

- азот нитратов
- хлориды.

Во всех контрольных точках зафиксированы превышения по следующим показателям:

- ΧΠΚ;
- Марганец;
- Медь;
- Цинк;
- Железо общее;
- Нефтепродукты.

Река Ива.

Вода р. Ива в фоновой точке характеризуется как класс 3 Б «очень загрязненная», вблизи впадения вода ухудшается на класс 4В «очень грязная». Причем ближе к устью увеличиваются количественные показатели содержания всех без исключения загрязняющих веществ.

Вместе в тем, по сравнению с 2012 годом, в фоновом створе вода стала лучше, а в устьевом створе качество воды ухудшилось.

Река Егошиха

Вода р. Егошиха в фоновой точке оценивается как 3Б «очень загрязненная», что лучше, чем в 2012 году (была «грязная» класс 4А). Протекая через индустриально развитые районы города, вблизи впадения в р. Кама, вода оценивается как «грязная», класс 4Б, что лучше, чем в 2012 году (была 4В «очень грязная»). Значительно возрастают концентрации азота нитритов, азота аммонийного, нефтепродуктов, сульфатов, что указывает на антропогенное загрязнение за счет хозяйственно-бытового загрязнения.

Река Данилиха

В фоновой точке вода характеризуется как «очень грязная», класс 4В, в 2012 году в той же точке вода относилась к «грязной» (4Б). Вместе с тем, в устье вода осталась «очень грязной» (класс 4В). Ближе к устью увеличивается содержание ХПК, нитритов, нефтепродуктов.

Река Мулянка

Качество воды осталось в 4 классе - класс 4А «грязная». Вода р. Мулянка в устье остается самой чистой из рассматриваемых малых рек.

приложения